from diffusers import FluxPipeline import torch from pathlib import Path import re from datetime import datetime def slugify(text): # remove non-word characters and foreign characters text = re.sub(r"[^\w\s]", "", text) text = re.sub(r"\s+", "-", text) return text prompt = "dirt highway road running through verdant grassy plains sparsely dotted with very broad tall trees with a mountain range and forest far in the distance" height, width = 720, 1280 ckpt_id = "./FLUX.1-schnell" DIR_NAME="/home/tonydero/remdirs/immich/" dirpath = Path(DIR_NAME) # create parent dir if doesn't exist # dirpath.mkdir(parents=True, exist_ok=True) # denoising pipe = FluxPipeline.from_pretrained( ckpt_id, torch_dtype=torch.bfloat16, use_safetensors=True, ) pipe.vae.enable_tiling() pipe.vae.enable_slicing() pipe.enable_sequential_cpu_offload() # offloads modules to CPU on a submodule level (rather than model level) output = pipe( prompt, height=height, width=width, num_images_per_prompt=8, num_inference_steps=4, max_sequence_length=128, guidance_scale=0.0, ) # print('Max mem allocated (GB) while denoising:', torch.cuda.max_memory_allocated() / (1024 ** 3)) # import matplotlib.pyplot as plt # plt.imshow(image) # image.save("./whitehenge.png") # plt.show() for idx, image in enumerate(output.images): timestamp = datetime.now().strftime("%Y%m%d%-H%M%S") image_name = f'{slugify(prompt[:64])}-{idx}-{timestamp}.png' image_path = dirpath / image_name image.save(image_path)