86 lines
3.1 KiB
Python
86 lines
3.1 KiB
Python
import requests
|
|
import ast
|
|
from datetime import datetime
|
|
from time import sleep
|
|
import pandas as pd
|
|
import pickle
|
|
import json
|
|
import math
|
|
import numpy as np
|
|
|
|
|
|
def convert_float(value):
|
|
try:
|
|
return float(value)
|
|
except:
|
|
return None
|
|
|
|
def convert_int(value):
|
|
try:
|
|
return int(value)
|
|
except:
|
|
return None
|
|
|
|
|
|
root_dir = "/home/tonydero/projects/weather-pydash/"
|
|
sensors_url = "http://192.168.1.221/get_livedata_info"
|
|
|
|
try:
|
|
sensors_out = pd.read_csv(root_dir+"output/sensors_out.csv", index_col=0)
|
|
except Exception as e:
|
|
print(datetime.now())
|
|
print(e)
|
|
|
|
def get_sensors(url):
|
|
sensors_response = requests.get(sensors_url)
|
|
|
|
sensors_dict = ast.literal_eval(sensors_response.content.decode('utf-8'))
|
|
|
|
den_dict = sensors_dict['wh25'][0]
|
|
outdoor_dict = sensors_dict['ch_aisle'][0]
|
|
lroom_dict = sensors_dict['ch_aisle'][1]
|
|
roffice_dict = sensors_dict['ch_aisle'][2]
|
|
toffice_dict = sensors_dict['ch_aisle'][3]
|
|
broom_dict = sensors_dict['ch_aisle'][4]
|
|
lightning_dict = sensors_dict['lightning'][0]
|
|
|
|
|
|
datum_dict = {}
|
|
datum_dict['den_temp'] = convert_float(den_dict['intemp'])
|
|
datum_dict['den_humi'] = convert_float(den_dict['inhumi'].strip("%"))/100
|
|
datum_dict['den_pabs'] = convert_float(den_dict['abs'].strip(" inHg"))
|
|
datum_dict['den_prel'] = convert_float(den_dict['rel'].strip(" inHg"))
|
|
datum_dict['lroom_temp'] = convert_float(lroom_dict['temp'])
|
|
datum_dict['lroom_humi'] = convert_float(lroom_dict['humidity'].strip("%"))/100
|
|
datum_dict['lroom_batt'] = convert_int(lroom_dict['battery'])
|
|
datum_dict['roffice_temp'] = convert_float(roffice_dict['temp'])
|
|
datum_dict['roffice_humi'] = convert_float(roffice_dict['humidity'].strip("%"))/100
|
|
datum_dict['roffice_batt'] = convert_int(roffice_dict['battery'])
|
|
datum_dict['toffice_temp'] = convert_float(toffice_dict['temp'])
|
|
datum_dict['toffice_humi'] = convert_float(toffice_dict['humidity'].strip("%"))/100
|
|
datum_dict['toffice_batt'] = convert_int(toffice_dict['battery'])
|
|
datum_dict['broom_temp'] = convert_float(broom_dict['temp'])
|
|
datum_dict['broom_humi'] = convert_float(broom_dict['humidity'].strip("%"))/100
|
|
datum_dict['broom_batt'] = convert_int(broom_dict['battery'])
|
|
datum_dict['outdoor_temp'] = convert_float(outdoor_dict['temp'])
|
|
datum_dict['outdoor_humi'] = convert_float(outdoor_dict['humidity'].strip("%"))/100
|
|
datum_dict['outdoor_batt'] = convert_int(outdoor_dict['battery'])
|
|
datum_dict['lghtng_dist'] = convert_float(lightning_dict['distance'])
|
|
datum_dict['lghtng_date'] = lightning_dict['date']
|
|
datum_dict['lghtng_time'] = lightning_dict['timestamp']
|
|
datum_dict['lghtng_scnt'] = convert_float(lightning_dict['count'])
|
|
datum_dict['lghtng_batt'] = convert_int(lightning_dict['battery'])
|
|
|
|
datum_df = pd.DataFrame(datum_dict, index=[datetime.now()])
|
|
|
|
return datum_df
|
|
|
|
try:
|
|
reading = get_sensors(sensors_url)
|
|
sensors_out_new = pd.concat([sensors_out, reading])
|
|
|
|
sensors_out_new.to_csv(root_dir+"output/sensors_out.csv")
|
|
except Exception as e:
|
|
print(datetime.now())
|
|
print(e)
|